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ABSTRACT

Gaze-on-screen tracking, an appearance-based eye-tracking
task, has drawn significant interest in recent years. While
learning-based high-precision eye-tracking methods have
been designed in the past, the complex pre-training and high
computation in neural network-based deep models restrict
their applicability in mobile devices. Moreover, as the dis-
play frame rate of mobile devices has steadily increased to
120 fps, high-frame-rate eye tracking becomes increasingly
challenging. In this work, we tackle the tracking efficiency
challenge and introduce GazeHFR, a biologic-inspired eye-
tracking model specialized for mobile devices, offering both
high accuracy and efficiency. Specifically, GazeHFR classi-
fies the eye movement into two distinct phases, i.e., saccade
and smooth pursuit, and leverages inter-frame motion infor-
mation combined with lightweight learning models tailored
to each movement phase to deliver high-efficient eye tracking
without affecting accuracy. Compared to prior art, Gaze-
HFR achieves approximately 7x speedup and 15% accuracy
improvement on mobile devices.

Index Terms— gaze estimation, mobile imaging, biomed-
ical video analysis, applications of machine learning

1. INTRODUCTION

Eye-tracking has been an active research topic in the field
of human-computer interaction, with potential applications
across a wide range of psychological [1, 2] and medical do-
mains, e.g., people with motor impairments [3]. As mobile
devices have become the de facto human-computer inter-
face, recent work has been increasingly focusing on devel-
oping gaze-on-screen tracking technologies tackling mobile-
specific application scenarios [4].

Early solutions for gaze-on-screen tracking suffer from
low tracking accuracy due to inherent technology limitations
and the lack of sufficient training data [5, 6]. Recently in-
troduced large-scale data sets, e.g., GazeCapture [7], have
greatly enhanced the accuracy of learning-based gaze-on-
screen models [8, 9, 10, 11], which capture human face
related features, determine the relative mapping between
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the face and screen coordinate systems, and infer human
gaze fixation position on the screen. However, adopting
learning-based methods to mobile devices still faces serious
performance challenges. Specifically, learning-based high-
precision eye-tracking models require complex video analytic
processing with high computation cost. For instance, ResNet
and DenseNet models may consist of over one thousand
layers. Using these models, existing methods may require
hundreds of milliseconds of CPU time to perform eye track-
ing at each individual video frame, making it challenging to
deliver real-time high-precision eye tracking in high-frame-
rate mobile scenarios.

In this work, we tackle the performance challenge by in-
troducing GazeHFR, a highly efficient high-frame-rate eye-
tracking method suitable for performance-constrained mobile
environment. The proposed work is inspired by the key obser-
vation that eye movement can be classified into two distinct
phases: Saccade, abrupt and rapid movement of both eyes
across multiple fixation points, and smooth pursuit, slow and
smooth eye movement [12, 13]. In contrast to saccade, which
is abrupt and rather unpredictable, smooth pursuit is slow and
smooth with a strong traceable or predictable motion pattern,
which motivates us to develop inter-frame motion prediction
technique to improve the efficiency of eye-tracking of smooth
pursuit. Furthermore, as smooth pursuit accounts for the ma-
jority of eye movements [14], reducing the redundant compu-
tation at this stage will bring substantial benefit to the overall
eye tracking task performance. To this end, this work presents
a new biologic-inspired framework leveraging the character-
istics of two eye movement phases. Specifically, GazeHFR
performs real-time eye tracking via a two step process. It first
detects eye movement in real-time and classifies the move-
ment into saccade or smooth pursuit phase. During a sac-
cade phase, a MobileNet based model is adopted to perform
frame-by-frame eye tracking to guarantee tracking accuracy.
For smooth pursuit, the most common case, GazeHFR lever-
ages inter-frame motion information to perform highly effi-
cient eye tracking without affecting tracking accuracy.

In summary, this work makes the following contribu-
tions. (1) We propose and develop GazeHFR, the first
biologic-inspired learning-based high-frame-rate gaze-on-
screen tracking framework. The proposed work targets
resource-constrained mobile platforms, with the considera-
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Fig. 1. Saccade (left) and smooth pursuit (right).

tion of motion dynamics and jitters caused by human motions.
(2) GazeHFR exhibits superb efficiency on mobile platforms.
Compared to prior work [7], GazeHFR offers approximately
7x speedup with 15% accuracy improvement.

2. PROPOSED MODEL

Eye movement patterns can be classified into two distinct
phases: saccade and smooth pursuit. As shown in Fig. 1,
Saccade refers to rapid conjugate eye movements that shift
both eyes from one target to another. Considered as one of
the fastest movements produced by human body, the speed of
the saccade motion can be up to 900 degrees/s [12]. Smooth
pursuit refers to slow and smooth eye movements with min-
imized retinal target motion with speed mostly lower than
30degrees/s. The two phases typically occur in an alternat-
ing fashion [15], and smooth pursuit accounts for the majority
time amount [14]. Such eye movement characteristics moti-
vate us to design techniques to detect, classify and track each
eye movement phase both accurately and efficiently.

2.1. System Overview

As shown in Fig. 2 and Fig. 3, GazeHFR consists of three key
components, a classification module, a single-frame mod-
ule (SFM) for saccade, and a time-series module (TSM) for
smooth pursuit. The classification module aims to detect
and classify which phase of real-time eye movement belongs
to, i.e., saccade or smooth pursuit. If a saccade phase is
detected, the single-frame module is triggered, which uses
a MobileNet-based deep model to perform frame-by-frame
high-precision eye tracking to guarantee tracking accuracy.
Otherwise if a smooth pursuit phase is detected, the time-
series module is triggered, and inter-frame motion informa-
tion is leveraged to perform highly efficient eye movement
prediction, and the costly frame-by-frame high-precision
tracking is avoided.

2.2. Classification Module

The classification model uses seven carefully selected fea-
tures to accurately characterize the eye-device relative move-
ment (Fig. 4), specifically, (Az, Ay) of pupil-to-corner dis-
placement of each eye (2 dimensions x2 eyes) and (A Pitch,
ARoll, AY aw) of devices. We detect the eye corners and
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Fig. 2. Flowchart of the proposed GazeHFR.
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Fig. 3. The architecture of GazeHFR.

pupil using Face++ API, a mature facial landmark detection
method. To eliminate the impact of face size and rotation in
the image, a specialized normalization strategy is designed for
the eyeball movement. Without losing generality, we take the
right eye as an illustration example. First, b, the vector from
left eye corner to right eye corner is taken as the x-axis, and
|b| is defined as per unit length. Further, @, the vector from
the left corner to the pupil is used to calculate the eyeball
movement with the formula shown in Fig. 4. In this reference
system, we effectively avoid the influence of the inclination
and zoom of the face in different real-world settings.

2.3. Single-Frame Module for Saccade

For a saccade phase, the fixation point cannot be accurately
predicted solely based on the motion information of prior
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input = (Axjefr, AYiefts Axrighe, AYrigns APitch, ARoll, AY aw)

Fig. 4. Eye classification features.
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Fig. 5. Translational and rotation motion.

frames. Therefore, SFM requires the input from the full-scale
image frame captured by the mobile device. In GazeHFR,
we adopt MobileNetV2 [16] as the backbone of SFM. Mo-
bileNetV2 is widely used as a convolutional neural network
model for mobile devices since it is lightweight and effi-
cient. In addition, MobileNetV2 can also deliver acceptable
performance for location detection tasks.

2.4. Time-Series Module for Smooth Pursuit

For a smooth pursuit phase, there are three possible cases: (1)
translational: gaze movement caused by translational mo-
tion of eyes or mobile device, e.g., reading a line of text; (2)
rotation: gaze movement caused by the rotation of a mo-
bile device, e.g., device shake; and (3) combination: gaze
movement combining translational motion and rotation. The
gaze motion trace may vary with different trajectory shapes
(anomaly, arc or approximately linear shape). As the third
case is the combination of the first two, the following discus-
sion only needs to cover the first two cases.

Translational: Without loss of generality, we discuss
uniform-acceleration linear gaze motion to simulate the in-
stantaneous gaze movement. Fig. 5 (left) exhibits the linear
gaze motion with uniform acceleration. Since the accelera-
tion remains constant, the trace can be formulated as:

Y= Ygu-1 + Ayg(t—l) + (Ayg(t—l) - Ay!](t—?))
T=Tg,_q + Axg(t—l) + (Azg(t—l) - Axg(t—2))

ey

GRU is adopted to capture the inter-frame motion in-
formation for translational trace tracking [17], in which the
hidden state h!~! of GRU is used to carry the gaze motion
features of previous frames. We assume h!~1! is a linear repre-
sentation of Ayg(t_l) , Ayg(t—m , Ayg(t_3) , A;cg(t_l) , Awg(t—2) ,
Axg(t*) . With z! including both Yg_yy and g, ), W" ma-
trix can easily learn the linear prediction. Then, with the help
of intermediate state of GRU cell, h? can also be restored as
the same linear representation form of h*~!. The relationship
between adjacent predictions move forward in this pattern.

Rotation: Fig. 5 (right) illustrates a simulative gaze mo-
tion scenario caused by device rotation. when the mobile
phone rolls 6 degrees to be perpendicular to the line of sight,
the gaze point moves equals L x (1—sinf). Considering com-
plex mobile scenarios where slight rotation-based gaze move-
ments occur frequently (e.g., jitter). Such movement noise of-
ten contains three types of motion patterns, i.e., roll, yaw, and

Table 1. Classification Performance of Different Methods.

Seq Precision  Recall Time

Model © {ohoth (%) (%)  (ms)
SVM 5 77.30 77.30 -
RF 5 77.30 86.71 -

2 79.12 9499 134

XGBoost 3 80.71 94.30 1.45

5 82.71 94.59 1.57

2 98.00% 92.29%  3.20

GRU 3 98.26% 94.21% 3.19

5 97.99%  90.52% 3.20

pitch. To tackle this problem, GazeHFR leverages mobile mo-
tion sensor to capture and compensate for such motion noise
during eye tracking.

3. EXPERIMENT

3.1. Experimental Setup

Dataset Preparation: We use the GazeCapture dataset [7]
to evaluate the performance of GazeHFR. We follow the
split of train/validation/test set in GazeCapture. That is, the
train/validation/test set contains 1,251,983/59,480/179,496
frames. We discard 32,751 invalid frames with missing
timestamps or motion data. We take the period of fixation at
specific dot in screen in dataset as smooth pursuit considering
the relative motion of head and device.

Compared Methods: GazeHFR is compared against the fol-
lowing methods.

* iTracker has shown the best representativeness among
existing methods from the literature. The asterisk
means the Error is the dot error mentioned in the
article for stream of frames [7].

* Baseline-saccade is designed as the model in which
only the saccade frame is calculated, while the rest is
filled with this result in a gaze window. It is to detect
whether TSM is working or not.

* Baseline-single-frame was applied to every frame on
the test set, not only the saccade phase. It is designed
to prove that the improvement of efficiency is mainly
contributed by GazeHFR rather than MobileNet.

Evaluation metric: recall and precision are used as the per-
formance metric for the classification module. We report the
gaze prediction performance using gaze error. Here, error
is defined as the Euclidean distance between the predicted
and the actual gaze position. We also define ef ficiency,
which represents the optimized workload of eye tracking per
unit calculation time. Here, the optimized workload is de-
fined as the reference model error minus the measured error.
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Table 2. Comparison of GazeHFR and the iTracker* re-
garding performance and computation time on the server.
iTracker* is selected as the reference model for ef ficiency,
so it has no ef ficiency value.

Time Error Ef ficiency
Model (ms) (cm) (cm/s)
iTracker* 84.15 3.16 -
GazeHFR 9.58 2.68 50.10
Baseline-saccade 8.87 2.78 42.84
Baseline-single-frame  38.21 2.64 13.61

E f ficiency represents the performance of models in terms
of computation time and gaze error. The less time or the
smaller error, the higher e f ficiency and the better.
Implementation: We implemented our model in PyTorch.
Experiments were run on a Dell PowerEdge T640 with two
Intel Xeon Silver 4110 2.10GHz 8-core processors, 64 GB
RAM, and four NVIDIA TITAN V GPUs. We also evaluate
our model on a set of mobile devices, i.e., iPhone X, iPhone
Xs Max, iPad Pro 11, Pixel 2, and Pixel 3. In particular, we
take Apple’s exclusive Core ML platform on iOS.

Training SFM: For SFM, we use MobileNetV2 as the back-
bone to extract features since MobileNetV?2 offer excellent ef-
ficiency and efficacy tradeoff on mobile devices. In our gaze
prediction task, we replace the last layer of MobileNetV2
with two newly-added fully connection (FC) layers: FC1 and
FC2. The out channels are squeezed gradually from FCI to
FC2 layers, which are 128 and 2, respectively. The two out-
puts reflect the two predicted gaze position coordinates: &
and ¢. First, SFM loads the parameters pre-trained on Ima-
geNet dataset [18] except the last regression part. Then, we
tune the SFM based on GazeCapture dataset [7]. We choose
Adam [19] as the optimizer. The learning rate is initially set
as 0.1 and it decays at a rate of 1/10 for each epoch.

3.2. Overall Performance

Eye Movement Classification: Table 1 evaluates the classifi-
cation performance of the proposed method using the follow-
ing widely used classifiers: SVM, Random Forest(RF), XG-
Boost [20], and GRU [17]. For each classifier, the sequence
length is set as 2, 3, and 5 respectively. As shown in Table 1,
the XGBoost classifier with sequence length 2 achieves the
best recall (94.99%) and processing time (1.34 ms). The GRU
classifier delivers the best precision (98.26%). The classifiers
exhibit acceptable performance, and can be used for the fol-
lowing gaze prediction in GazeHFR.

Gaze Prediction on Server: Table 2 shows the compar-
ison between GazeHFR and iTracker* regarding accuracy
and computation time running on the server. The computa-
tion time is 9.58 ms (GazeHFR) and 84.15ms (iTracker*),
respectively. The prediction Error is 2.68 cm (GazeHFR)
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Fig. 6. Comparison under Mobile Scenario.

and 3.16 cm (iTracker*). We can see that GazeHFR achieves
approximately 9x efficiency improvement and 15% accuracy
improvement compared with iTracker*. Interestingly, we
find that the baseline-saccade model outperforms iTracker*
despite none of the subsequent frames is computed. It shows
that the saccade phase of our single-frame model can auto-
matically extract the eyes and location context information,
which needs to be input manually in iTracker*.

Compared to baseline-saccade without the time-series

module, GazeHFR reduced the error by 0.1cm, which
demonstrates the effectiveness of the time-series model.
Compared to baseline-single-frame, GazeHFR loses 1.5%
accuracy, but with only 25% of computation time.
Gaze Prediction on Mobile Devices: Fig. 6 visualizes the
computation cost of GazeHFR and iTracker* on a set of mo-
bile devices. As we can see, GazeHFR achieves approxi-
mately 7x efficiency improvement compared with other base-
lines. The performance improvement is the same, 15%, as
that of the server case since we use the same GazeHFR on
both the server and the mobile devices, as GazeHFR can be
seamlessly adopted from server to mobile devices.

4. CONCLUSION

In this work, we introduce GazeHFR, a highly efficient high-
precision gaze-on-screen tracking framework targeting high-
frame-rate yet resource-constrained mobile scenarios. We
develop a biologic-inspired and interleaving policy to sup-
port eye movement phase-specific tracking. The proposed
work leverages efficient motion estimation combined with
lightweight deep models to enable efficient yet accurate eye
tracking. Experimental results demonstrate that GazeHFR
achieves approximately 7x efficiency improvement and 15%
accuracy improvement compared with the existing method.
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